AMH & STIMULATION STRATEGY
BULENT BERKER, MD, PROF.
OUTLINE:

- IVF success
- i-COS
- Ovarian reserve
- Prediction of ovarian response
- AMH dictated COH protocols
- i-Gn dosage models
SUCCESS in IVF?
Cumulative Live-Birth Rates after In Vitro Fertilization

Figure 1. Kaplan–Meier Curves for Optimistic and Conservative Cumulative Live-Birth Rates among 6164 Women.

The optimistic cumulative live-birth rate is based on the assumption that patients who did not return for treatment had the same chance of a pregnancy resulting in a live birth as those who remained in treatment. The conservative cumulative live-birth rate assumes that patients who did not return for treatment did not have a pregnancy resulting in a live birth. These two curves show the best-case and worst-case estimates of the cumulative live-birth rate in the study population.
It is generally considered that age is the primary driver of treatment success in IVF programmes.

By postponement of childbearing, a growing number of couples attempting pregnancy will experience reduced fecundability.

Strict embryo transfer policy.
Woman age and fertility

- Optimal fertility
- Decrease fertility
- End of fertility
- Irregular cycles
- Early ovarian ageing
- Menopause
Woman age and fertility

success rates after ART
(2006 report - US Center for Disease Control and Prevention)
Woman age and fertility

Ferraretti, HR 2011
How many is better?

- Oocyte yield plays a critical role in predicting IVF success
Association between the number of eggs and live birth in IVF treatment: an analysis of 400,135 treatment cycles

Sesh Kamal Sunkara¹, Vivian Rittenberg¹, Nick Raine-Fenning², Siladitya Bhattacharya³, Javier Zamora⁴, and Arri Coomarasamy⁵,*

Figure 3 Association between egg number and live birth rate.

Association between the number of eggs and live birth

There was a strong association between the number of eggs and the LBR (Fig. 3a) which rose with increasing number of eggs up to ~15, plateaued between 15 and 20 eggs and steadily declined beyond 20 eggs. The same pattern was observed in all four of the time periods. For a given number of eggs, LBRs increased over time (Fig. 3b) but decreased with increasing age (Fig. 3c).

Figure 1 The objective of the individualization of the treatment strategy would be to possibly increase the percentage of patients with a number of retrieved oocytes considered appropriate, hence reducing the number of women at high risk of cycle cancellation and ovarian hyper-stimulation syndrome (OHSS). Top of the figure: Bars indicate the actual frequency of retrieved oocytes as derived by Sunkara et al. (2011). The line indicates the ideal frequency of retrieved oocytes, characterized by a very high percentage of women with an appropriate oocyte yield.
Why do couples drop-out from IVF treatment? A prospective cohort study

M.F.G. Verberg¹,4, M.J.C. Eijkemans¹,2, E.M.E.W. Heijnen¹, F.J. Broekmans¹, C. de Klerk³, B.C.J.M. Fauser¹ and N.S. Macklon¹

The causes of drop-out are summarize:

- the principal reason for dropping-out was the physical or psychological burden of treatment (28%).
- In 14% of drop-out patients, the primary reason for stopping treatment was a poor prognosis identified by a physician (actively censored).

40% of couples abandon IVF after a single cycle.
COH – IVF
: Multifollicular ovulation induction
It is evident that patients have different ovarian responses to the same ovarian stimulation. The ability to predict this variation in ovarian response is very useful in making ovarian stimulation safe and effective.

- Poor response
 - Suboptimal laboratory performance
 - Cancelled cycles
- Excessive response
 - Supraphysiologic E2
 - OHSS
 - Economic burden

"Optimum" response

Gonadotrophin dosage
Ovarian response prediction?

- **For patients predicted to have a poor ovarian response:**
 - clinicians may decide to counsel patients not to proceed with treatment or
 - alter their treatment protocol or
 - even to suggest egg donation at an early stage in their management

- **For patients anticipated to have an excessive ovarian response:**
 - clinicians can provide guidance on the potential risks associated with treatment
 - in addition to increased monitoring during treatment, and
 - can recommend alterations in treatment schedules accordingly
Accurate prediction of ovarian response

- enable clinicians to give women more accurate information about the expected outcome of IVF treatment
- enable individualization of the therapeutic strategy

The main aim of treatment individualization in IVF is
- to maximize the success
- to minimize the risk of OHSS
- to minimize cycle cancellation
Ovarian response prediction

- Choice is likely to be empirical
- Age
- BMI
- Previous cycle response

- Ovarian reserve tests
 - USG: AFC
 - Biochemical: FSH, AMH
Our current understanding of female reproductive function is that the ovary contains a limited number of primordial follicles and that their depletion marks the menopause.

The remaining primordial follicle pool is referred to as the ovarian reserve.

Throughout life, until their numbers are exhausted, primordial follicles leave the primordial follicle pool to enter the growing pool, with the vast majority intended to undergo atresia.
Ovarian reserve: Non-growing follicles

The graph illustrates the population of NGF (Non-growing Follicles) over time from conception to birth and from birth to menopause. It shows the average population at birth (295,000 with a 95% confidence interval of 34,800 - 2,508,000), and the decline in population as females mature. For example, at age 13, the average population is 180,000 (95% CI 21,300 - 1,512,000), and at age 25 and 35, the populations are 65,000 (95% CI 7,700 - 546,000) and 16,000 (95% CI 1,900 - 135,000) respectively. The average age at menopause is 49.6 years (95% CI 38.7 - 60.0 years).
Basal FSH

- has to be done in the early follicular phase
- requires concomitant E2 determination
- it requires a functioning hypothalamic–pituitary–gonadal system
- an elevated FSH is a sufficiently specific marker of low response to ovarian stimulation
- it does not detect high ovarian reserve, a known risk factor for ovarian hyperstimulation
Search for a better marker
Timing of granulosa cell secretion of AMH, inhibin B, and E$_2$ during folliculogenesis
Timing of granulosa cell secretion of AMH, inhibin B, and E_2 during folliculogenesis.
Anti-Müllerian hormone

- AMH is a glycoprotein within the transforming growth factor-[beta] family.
- It was first described in 1947 by Jost as a gonadal factor produced by Sertoli cells in the male embryo causing regression of the Müllerian ducts.
- Expression of AMH in the ovary was first reported by Hutson 30 years ago.

Figure 2 Schematic depicting the processing of AMH. AMH is produced as a precursor protein consisting of disulphide-linked monomers. Upon cleavage by prohormone convertases, the protein is cleaved into pro- and mature homodimers, which remain non-covalently associated. AMH ELISAs have been developed to detect AMH in the circulation. The regions that are recognized by the monoclonal antibodies used in the ultrasensitive IOT assay and the Gen II assay (previously DSL) are indicated. For the Gen II assay, the capture antibody recognized the mature region and the detector antibody recognizes the proregion.
Over the last 10 years, after the development of commercially available assays, there has been a rapidly growing interest in the clinical utility of AMH measurements in female reproductive function.
AMH attenuates this promotion
<table>
<thead>
<tr>
<th>Feature</th>
<th>FSH</th>
<th>AMH</th>
</tr>
</thead>
<tbody>
<tr>
<td>Site of secretion</td>
<td>Anterior pituitary</td>
<td>Granulosa of pre- and small antral follicles</td>
</tr>
<tr>
<td></td>
<td>Latest</td>
<td>Earliest</td>
</tr>
<tr>
<td>Temporal change indicating ovarian aging</td>
<td>Cycle day 2–4 only</td>
<td>Any cycle day</td>
</tr>
<tr>
<td>Timing requirement</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Need for concomitant assay</td>
<td>E_2</td>
<td>None</td>
</tr>
<tr>
<td>Cycle to cycle variability</td>
<td>High</td>
<td>Low</td>
</tr>
<tr>
<td>Sensitivity for low response</td>
<td>Moderate</td>
<td>Moderate</td>
</tr>
<tr>
<td>Sensitivity for high response (risk of OHSS)</td>
<td>None</td>
<td>High</td>
</tr>
<tr>
<td>Specificity for low response</td>
<td>High</td>
<td>High</td>
</tr>
<tr>
<td>Specificity for high response</td>
<td>None</td>
<td>High</td>
</tr>
<tr>
<td>Age-specific values</td>
<td>Limited</td>
<td>Extensive information</td>
</tr>
<tr>
<td>Methodology</td>
<td>Automated (1 h)</td>
<td>ELISA (6 h)</td>
</tr>
</tbody>
</table>
AMH and follicular recruitment profile across the human reproductive lifespan.
Added value of ovarian reserve testing on patient characteristics in the prediction of ovarian response and ongoing pregnancy: an individual patient data approach

Simone L. Broer1,2,*, Jeroen van Disseldorp1,2, Kimiko A. Broeze1,2, Madeleine Dollemant1,2, Brent C. Opmeer1,3, Patrick Bossuyt1,3, Marinus J.C. Eijkemans1,3, Ben-Willem J. Mol1,3, and Frank J.M. Broekmans1,2 on behalf of the IMPORT study group”

Figure 1 Flowchart of included studies.
Added value of ovarian reserve testing on patient characteristics in the prediction of ovarian response and ongoing pregnancy: an individual patient data approach

Simone L. Broer1,2,3, Jeroen van Disseldorp1,2, Kimiko A. Breeze1,3, Madeleine Dolleman1,2, Brent C. Opmeer1,2, Patrick Bossuyt1,3, Marinus J.C. Eijkemans1,3, Ben-Willem J. Mol1,3, and Frank J.M. Broekmans1,3 on behalf of the IMPORT study group

Figure 3 ROC curves of age and ORT in the prediction of poor response and ongoing pregnancy. (A) Poor response prediction based on age and ORT. The ROC curves of age or age combined with a single or more ORT are depicted. The ROC curves for ‘Age + AMH’, ‘Age + AMH + AFC’ and ‘Age + AMH + AFC + FSH’ run toward the upper left corner, indicating a good capacity to discriminate between normal and poor responders at certain cut-off levels. (B) Ongoing pregnancy prediction based on age and ORT. The ROC curves age or age combined with one or more ORT run almost parallel to or even cross the X = Y line, indicating that the tests are useless for pregnancy prediction. AFC, antral follicle count; AMH, anti-Müllerian hormone; FSH, follicle stimulating hormone; ORT, ovarian reserve test; ROC, receiver-operating characteristic.
Prediction of an excessive response in in vitro fertilization from patient characteristics and ovarian reserve tests and comparison in subgroups: an individual patient data meta-analysis

Simone L. Broer, M.D., Ph.D.,* Madeleine Dölleman, M.D.,* Jeroen van Disseldorp, M.D., Ph.D.,* Kimiko A. Broeze, M.D.,* Brent C. Opmeer, Ph.D.,† Patrick M. M. Bossuyt, Ph.D.,‡ Martinus J. C. Eijkemans, Ph.D.,§ Ben Willem Mol, M.D., Ph.D.,‡ and Frank J. M. Broekmans, M.D., Ph.D.,* on behalf of the IPD-EXPORT Study Group

Objective: To evaluate whether ovarian reserve tests (ORTs) add prognostic value to patient characteristics, such as female age, in the prediction of excessive response to ovarian hyperstimulation in patients undergoing IVF, and whether their performance differs across clinical subgroups.

Design: Authors of studies reporting on basal FSH, antimüllerian hormone (AMH), or antral follicle count (AFC) in relation to ovarian response to ovarian hyperstimulation were invited to share original data. Random intercept logistic regression models were used to estimate added value of ORTs on patient characteristics, while accounting for between-study heterogeneity. Receiver operating characteristic regression analyses were performed to study the effect of patient characteristics on ORT accuracy.

Setting: In vitro fertilization clinics.

Patient(s): A total of 4,786 women for the main analysis, with a subgroup of 1,023 women with information on all three ORTs.

Intervention(s): None.

Main Outcome Measure(s): Excessive response prediction.

Result(s): We included 57 studies reporting on 32 databases. Female age had an area under the receiver operating characteristic curve of 0.61 for excessive response prediction. Antral follicle count and AMH significantly added prognostic value to this. A model with female age, AFC, and AMH had an area under the receiver operating characteristic curve of 0.85. The combination of AMH and AFC, without age, had similar accuracy. Subgroup analysis indicated that FSH performed significantly worse in predicting excessive response in higher age groups, AFC did significantly better, and AMH performed the same.
Areas under the curve and ROC curves of prediction models of age and ovarian reserve tests for the prediction of an excessive response. (A) Areas under the curves of prediction models of age and ovarian reserve tests for the prediction of an excessive response. The AUCs of the univariable and multivariable models of age or ORTs in the prediction of an excessive response are shown. In the univariable analysis it is shown that both AMH and AFC have high accuracy, whereas FSH only has moderate accuracy. In the multivariable models the added value to the AUC of an ORT on female age is shown; the P value indicates whether this added value is significant in comparison with the model based on age alone. Adding any of the ORTs shows a significant rise in the AUC. Moreover, the added value of adding several ORTs to female age is shown. The model including age, AFC, and AMH reached the maximum predictive power. Addition of FSH to this model did not improve the predictive accuracy (P=.725). However, a model with AMH and AFC alone has a comparable AUC. (B) Receiver operating characteristic curves of age and ORTs in the prediction of an excessive response. The ROC curves of age and age combined with a single or more ORTs are depicted. The ROC curves for Age + AMH, Age + AFC, Age + AMH + AFC, and Age + AMH + AFC + FSH run toward the upper left corner of the ROC space, indicating a good capacity to discriminate between normal and excessive responders at certain cutoff levels. Receiver operating characteristic curves in the three-test study group \((n = 1,023) \).

AMH: 0.7–1.3 ng/ml may be considered acceptable for the prediction of poor response in IVF

AFC cut-off <5–7 may be considered acceptable for the prediction of poor response in IVF
AMH: 3.52 and 3.9 ng/ml acceptable cut-off values for the prediction of hyper response in IVF

AFC value of >16, with a sensitivity of 89% and a specificity of 92%, for the prediction of high response

<table>
<thead>
<tr>
<th>Study</th>
<th>Design</th>
<th>n</th>
<th>AFC cut-off</th>
<th>Sensitivity (%)</th>
<th>Specificity (%)</th>
<th>PPV (%)</th>
<th>NPV (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Poor response</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chang et al. (1998)</td>
<td>Prospective</td>
<td>149</td>
<td>3</td>
<td>73</td>
<td>96</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sharma & McClure (1999)</td>
<td>Prospective</td>
<td>127</td>
<td>4</td>
<td>53</td>
<td>73</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Frattarelli et al. (2000)</td>
<td>Retrospective</td>
<td>278</td>
<td>10</td>
<td>87</td>
<td>41</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hsieh et al. (2001)</td>
<td>Prospective</td>
<td>372</td>
<td>3</td>
<td>61</td>
<td>94</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nishim et al. (2001)</td>
<td>Prospective</td>
<td>224</td>
<td>6</td>
<td>95</td>
<td>69</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Frattarelli et al. (2003)</td>
<td>Prospective</td>
<td>267</td>
<td>4</td>
<td>30</td>
<td>96</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jirivell et al. (2003)</td>
<td>Retrospective</td>
<td>45</td>
<td>4</td>
<td>86</td>
<td>84</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yang et al. (2003)</td>
<td>Prospective</td>
<td>46</td>
<td>4</td>
<td>9</td>
<td>97</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Banci et al. (2004)</td>
<td>Prospective</td>
<td>120</td>
<td>4</td>
<td>61</td>
<td>88</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Durrance et al. (2004)</td>
<td>Retrospective</td>
<td>106</td>
<td>6</td>
<td>65</td>
<td>74</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ng et al. (2005)</td>
<td>Prospective</td>
<td>131</td>
<td>4</td>
<td>33</td>
<td>92</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Muttekra et al. (2005)</td>
<td>Retrospective</td>
<td>108</td>
<td>5</td>
<td>89</td>
<td>39</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fippe et al. (2006)</td>
<td>Prospective</td>
<td>44</td>
<td>4</td>
<td>77</td>
<td>41</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Selidokets et al. (2007)</td>
<td>Retrospective</td>
<td>327</td>
<td>8</td>
<td>62</td>
<td>74.8</td>
<td>59.1</td>
<td>77</td>
</tr>
<tr>
<td>Jayakumar et al. (2007)</td>
<td>Prospective</td>
<td>100</td>
<td>7</td>
<td>100</td>
<td>92.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kwee et al. (2008)</td>
<td>Prospective</td>
<td>110</td>
<td>6</td>
<td>41</td>
<td>95</td>
<td>75</td>
<td></td>
</tr>
<tr>
<td>Mele et al. (2009)</td>
<td>Prospective</td>
<td>1074</td>
<td>12</td>
<td>71.1</td>
<td>69.2</td>
<td>83.3</td>
<td>52.6</td>
</tr>
<tr>
<td>Jayakumar et al. (2010a)</td>
<td>Prospective</td>
<td>135</td>
<td>11</td>
<td>93</td>
<td>88</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Talvik et al. (2011)</td>
<td>Prospective</td>
<td>90</td>
<td>4.5</td>
<td>72.4</td>
<td>80.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bonilla-Meza et al. (2012)</td>
<td>Retrospective</td>
<td>143</td>
<td>7</td>
<td>72</td>
<td>75</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mutlu et al. (2013)</td>
<td>Retrospective</td>
<td>192</td>
<td>5.5</td>
<td>91</td>
<td>91</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Polyzos et al. (2013)</td>
<td>Retrospective</td>
<td>210</td>
<td>8</td>
<td>72.2</td>
<td>84.6</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Hyper response

<table>
<thead>
<tr>
<th>Study</th>
<th>Design</th>
<th>n</th>
<th>AFC cut-off</th>
<th>Sensitivity (%)</th>
<th>Specificity (%)</th>
<th>PPV (%)</th>
<th>NPV (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ng et al. (2000)</td>
<td>Prospective</td>
<td>128</td>
<td>9</td>
<td>60</td>
<td>71</td>
<td></td>
<td></td>
</tr>
<tr>
<td>van Raaj et al. (2002)</td>
<td>Prospective</td>
<td>114</td>
<td>14</td>
<td>92</td>
<td>63</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Elgard-Geva et al. (2005)</td>
<td>Prospective</td>
<td>56</td>
<td>14</td>
<td>94</td>
<td>33</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kwee et al. (2007)</td>
<td>Prospective</td>
<td>110</td>
<td>14</td>
<td>81</td>
<td>89</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Afzalpoor et al. (2009)</td>
<td>Prospective</td>
<td>159</td>
<td>16</td>
<td>89</td>
<td>92</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oral et al. (2011)</td>
<td>Retrospective</td>
<td>82</td>
<td>8*</td>
<td>74</td>
<td>65</td>
<td>52</td>
<td>86</td>
</tr>
<tr>
<td>Polyzos et al. (2013)</td>
<td>Retrospective</td>
<td>210</td>
<td>16</td>
<td>80</td>
<td>84.5</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Prediction of ovarian hyperstimulation syndrome. AFC, antral follicle count.
Since there is no evidence of superiority of one approach over another in the treatment of poor responders, the protocol associated with reduced discomfort and treatment burden should be preferred. In hyper-responder patients, one of the most important objectives of medical counselling is to prevent OHSS. Hence the first line protocol would be based on administration of low doses of FSH in a GnRH-antagonist-based scheme.
Comparison of characteristics of the most widely used markers of ovarian reserve

<table>
<thead>
<tr>
<th>Characteristics for a Good Marker</th>
<th>Age</th>
<th>AMH</th>
<th>FSH</th>
<th>AFC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prediction of poor response</td>
<td>+</td>
<td>++++</td>
<td>++</td>
<td>+++</td>
</tr>
<tr>
<td>Prediction of hyper response</td>
<td>+</td>
<td>++++</td>
<td>+</td>
<td>+++</td>
</tr>
<tr>
<td>Low inter-cycle variability</td>
<td>++++</td>
<td>++</td>
<td>-</td>
<td>++</td>
</tr>
<tr>
<td>Low intra-cycle variability</td>
<td>++++</td>
<td>++</td>
<td>-</td>
<td>++</td>
</tr>
<tr>
<td>Applicable to all patients</td>
<td>++++</td>
<td>++</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Economic</td>
<td>++++</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

- Serum AMH and AFC both seem to be the most reliable predictors of ovarian ageing
 - they are equivalent in terms of their accuracy in predicting ovarian response
 - but none of the currently employed tests of ovarian reserve can reliably predict pregnancy success
Therefore, other factors might influence the choice of test:

Advantages of AMH include

- intracycle stability and
- the fact that concentrations can be determined from blood obtained during routine IVF testing

In contrast, AFC needs to be determined early in the follicular phase of the cycle by a skilled ultrasound operator and the measurement requires standardization.
Table 2 The basic clinical and technical requirements for assessment of the AFC in clinical practice (reproduced with permission from Broekmans et al.)

Considerations for the assessment of the AFC in clinical practice

<table>
<thead>
<tr>
<th>Clinical considerations</th>
<th>Technical considerations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Select patients with regular menstrual cycles with no co-existing pathological condition that could technically affect the counting of follicles, such as ovarian endometriosis or previous ovarian surgery</td>
<td>A limited number of personnel, appropriately trained in transvaginal sonography should perform AFCs in each unit</td>
</tr>
<tr>
<td>Count follicles between days 2 and 4 of a spontaneous menstrual or oral contraceptive cycle to avoid the effect of intra-cycle variation</td>
<td>Real-time, two-dimensional imaging is adequate</td>
</tr>
<tr>
<td>Include all antral follicles of 2-10 mm in diameter</td>
<td>Use a transvaginal transducer</td>
</tr>
</tbody>
</table>

Use a systematic process for counting antral follicles:
1. Identify the ovary
2. Explore the dimensions in two planes (perform a scout sweep)
3. Decide on the direction of the sweep to measure and count follicles
4. Measure the largest follicle in two dimensions

A. If the largest follicle is ≤10 mm in diameter:
 i. Start to count from outer ovarian margin of the sweep to the opposite margin
 ii. Consider every round or oval transonic structure within the ovarian margins to be a follicle
 iii. Repeat the procedure with the contralateral ovary
 iv. Combine the number of follicles in each ovary to obtain the AFC

B. If the largest follicle is > 10 mm in diameter:
 i. Further ascertain the size range of the follicles by measuring each sequentially smaller follicle, in turn, until a follicle with a diameter of ≤10 mm is found
 ii. Perform a total count (as described) regardless of follicle diameter
 iii. Subtract the number of follicles of > 10 mm from the total follicle count
The AMH test

- Variability throughout the menstrual cycle
- Assay availability and variability
The AMH variability throughout the menstrual cycle
AMH: menstrual cycle variability

- AMH levels in the follicular phase appear to be 20-30% greater than in the luteal phase

Comparison of inter- and intra-cycle variability of anti-Müllerian hormone and antral follicle counts

J. van Disseldorp1,6, C.B. Lambalk2, J. Kwee3, C.W.N. Looman4, M.J.C. Eijkemans1,5, B.C. Fauser1, and F.J. Broekmans1

1Department of Reproductive Medicine and Gynaecology, University Medical Center Utrecht, PO Box 85500, Room F05.126, 3508 GA Utrecht, The Netherlands 2Division of Reproductive Medicine, Department of Obstetrics and Gynaecology, VU University Medical Center (VUmc), PO Box 7057, 1007 MB Amsterdam, The Netherlands 3Department of Obstetrics and Gynaecology, Sint Lucas Andreas Ziekenhuis, PO Box 9243, 1006 AE Amsterdam, The Netherlands 4Department of Public Health, Erasmus Medical Center, PO Box 2040, 3000 CA Rotterdam, The Netherlands 5Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, The Netherlands

6Correspondence address. Tel: +31-88-755-3629; Fax: +31-88-755-5433; E-mail: j.vandisseldorp.2@umcutrecht.nl

BACKGROUND: The antral follicle count (AFC) and anti-Müllerian hormone (AMH) both represent age-related follicular decline quite accurately, although long-term follow-up studies are still lacking. The best ovarian reserve test would need only a single, cycle-independent measurement to be representative.

METHODS: To compare the inter- and intra-cycle stability of AFC and AMH, we used age-adjusted intra-class correlation coefficients (iCCCs). To measure inter-cycle stability across a number of up to four menstrual cycles, we used data, prospectively collected for the purpose of another study, from 77 regularly cycling, infertile women aged 24–40 years. AMH and AFC values were measured on cycle day 3. To study intra-cycle variability, we used data from a prospective cohort study of 44 regularly cycling volunteers, aged 25–46 years and measured AMH and assessed the AFC (2–10 mm) every 1–3 cycle days.

RESULTS: Between menstrual cycles, AFC and AMH varied between 0 and 25 follicles (median 10), and 0.3 and 27.1 ng/ml (median 4.64). The difference in age-adjusted ICC between AMH [ICC, 0.89 (95% CI, 0.84–0.94)] and AFC [ICC, 0.71 (95% CI, 0.63–0.77)] was 0.18 (95% CI, 0.12–0.27). For the intra-cycle variation, 0–43 antral follicles (median 7) were counted per volunteer. The difference in age-adjusted ICC between AMH [ICC, 0.87 (95% CI, 0.82–0.91)] and AFC [ICC, 0.69 (95% CI, 0.46–0.82)] was 0.18 (95% CI, 0.034–0.42).

CONCLUSIONS: Serum AMH demonstrated less individual intra- and inter-cycle variation than AFCs and may therefore be considered a more reliable and robust means of assessing ovarian reserve in subfertile women.
• The European and US assays were developed with different antibodies and reported out very different results, using different units.
• That problem has now been resolved by the manufacture of both ELISAs by the same company and the development of a new assay that combines the best features of both. Thus, currently there is only one assay
Novel approach for AMH measurement (ELISA)

Beckman Coulter AMH Generation II (AMH Gen II)

- still a manual system (not automated)
 - employs the DSL antibody
 - calibrated to the IOT standard
- values *(in ng/mL)* comparable to the IOT assay and correlated to the DSL assay *(values > 40%)*
 - sensitivity *(limit of quantitation)* = 0.16 ng/mL
- hormone stability
 - whole blood
 - at room temperature: increments up to 31% after 4 days
 - at 4°C: lesser increments
 - serum & plasma
 - stable at room temperature and at 4°C up to 5 days
AMH dictated COH protocols

Figure 4 Strategic modelling of controlled ovarian stimulation on the basis of ovarian reserve markers. The introduction of individualized AMH-tailored controlled ovarian stimulation utilizing agonist and antagonist protocols has been reported as associated with improved IVF cycle, i.e. increased pregnancy rate. Similarly a reduction in the incidence of adverse outcomes, such as OHSS, has been reported (modified with permission from Nelson et al. (2009) and Yates et al. (2011)). (AMH was measured with the DSL assay). AMH; anti-Mullerian Hormone.
Is there a low AMH cut off value to refuse IVF treatment?

- However, AMH measurements are not suitable for denying access to IVF treatment, as women with very low, even undetectable levels, still have a chance of pregnancy.
Live birth chances in women with extremely low-serum anti-Mullerian hormone levels

Andrea Weghofer¹,²,*†, Wolf Dietrich³,⁺, David H. Barad²,⁴, and Norbert Gleicher²,⁵

Table II Pregnancy outcomes in 128 IVF patients with extremely low AMH levels (0.1–0.4 ng/ml).

<table>
<thead>
<tr>
<th></th>
<th>All patients (n = 128/254)¹</th>
<th>95% CI</th>
<th>≤ Age 42 years (n = 70/145)¹</th>
<th>95% CI</th>
<th>> Age 42 years (n = 58/109)¹</th>
<th>95% CI</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clinical pregnancies per cycle</td>
<td>20 (7.9%)</td>
<td>[4.9%–11.9%]</td>
<td>16 (11.0%)</td>
<td>[6.4%–17.3%]</td>
<td>4 (3.7%)</td>
<td>[1.0%–9.1%]</td>
<td>0.031</td>
</tr>
<tr>
<td>Clinical pregnancies per patient</td>
<td>20 (15.6%)</td>
<td>[9.8%–23.1%]</td>
<td>16 (22.9%)</td>
<td>[13.7%–34.5%]</td>
<td>4 (6.9%)</td>
<td>[1.9%–16.7%]</td>
<td>0.013</td>
</tr>
<tr>
<td>Deliveries after 1st IVF cycle</td>
<td>8 (6.3%)</td>
<td>[2.7%–11.9%]</td>
<td>7 (10.0%)</td>
<td>[4.1%–19.5%]</td>
<td>1 (1.7%)</td>
<td>[0.04%–9.2%]</td>
<td>0.055</td>
</tr>
<tr>
<td>Deliveries per patient</td>
<td>12 (9.4%)</td>
<td>[4.9%–15.8%]</td>
<td>10 (14.3%)</td>
<td>[7.1%–24.7%]</td>
<td>2 (3.4%)</td>
<td>[0.4%–11.9%]</td>
<td>0.036</td>
</tr>
</tbody>
</table>

¹Patients/ART cycles.
Individualized Gn-dosing algorithms

- **Popovic-Todorovic et al-2003**
 - RCT; Standart patients
 - 150 IU vs calculated Dose; Agonist
 - AFC, Ovarian v; Doppler score; Famele age; Smoking habit

- **Olivennes et al-2009**
 - CONSORT; Prospective uncontrolled
 - Calculated Dose; Agonist
 - Basal FSH; BMI; Female age and AFC

- **La Marca et al-2012, 2013**

- **OPTIMIST -Enrolling**
Figure 5 Nomogram for calculation of the FSH starting dose based on age, AFC and Day 3 serum FSH. In the example, for a 30-year-old woman with AFC = 16 and d3FSH = 4 IU/L, the FSH starting dose is 152 IU/day. Since the new FSH delivery system will have the dosage dial based on doses of FSH of 12.5 IU, on the right side of the FSH starting dose column, the FSH dose as selected for the delivery system is reported (150 IU/day, for example). (from La Marca et al. (2013) with permission). AFC: antral follicle count.
Figure 6 The nomogram for the calculation of the FSH starting dose based on age, serum AMH and FSH. In the example, for a 30-year-old woman with serum AMH level of 4 ng/ml and FSH level of 4 IU/l, the FSH starting dose is 152 IU/day. Since the new upcoming FSH delivery system will have the dosage dial based on doses of FSH of 12.5 IU, on the right side of the FSH starting dose column, the FSH dose as selected for the delivery system is reported (150 IU/day for the example). (AMH was measured with the IBC assay. AMH conversion factor: 1 ng/ml = 7.143 pmol/l) (from La Marca et al. (2012b), with permission). AMH, anti-Mullerian Hormone.
CONCLUSION

- Accurate prediction of ovarian reserve has several advantages and can help to improve female reproductive health
- Age
- Counting antral follicles is “operator dependent”
- Relative cycle stability and operator independency make AMH a very appealing marker of ovarian reserve
CONCLUSION

- AMH is the most useful serum method of determining ovarian reserve, pretreatment counseling, selecting choice of infertility treatment, and avoidance of ovarian hyperstimulation.

- No marker is perfect, and AMH is no exception. Antimüllerian hormone is certainly a good predictor of egg supply, but it may not predict egg quality. Automated methodology should become available to establish a uniform methodology.
CONCLUSION

- For the first time in female reproductive biology, it is possible to measure the submerged part of the iceberg of follicle growth, i.e. the intrinsic, so-called ‘acyclic’ ovarian activity.

- Further research is needed to establish whether individualized treatment protocols based on basal AMH serum concentrations will result in improved clinical outcomes by
 - reducing poor response rates
 - lowering the incidence of OHSS
 - increasing live birth rates
Thanks for your patience …