Clinical Experience With Corifollitropin alfa

L. Cem Demirel, M.D.

Memorial Ataşehir Hospital IVF Department, İstanbul
Our team has no financial interaction with MSD company, nor has received any support for the medications used by the patients.
Corifollitropin alfa

- rFSH = recombinant follicle-stimulating hormone
- hCG = human chorionic gonadotropin

Direct gonadotropin suppression

<table>
<thead>
<tr>
<th>Time</th>
<th>Corifollitropin alfa</th>
<th>rFSH</th>
<th>hCG</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>9</td>
<td>10</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- ≤ 60 kg : 100 µg
- > 60 kg : 150 µg
Inclusion criteria

- First cycle
- All infertility etiologies excluding PCOS
- AFC > 5
- D3 FSH < 10 mIU / mL and E₂ < 80 pg / mL
- Ejaculate sperm
- Age < 42
Patient and cycle characteristics

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td>33.7 (range 25-42)</td>
</tr>
<tr>
<td>Mean number of oocytes and MII oocytes retrieved / OPU</td>
<td>11.2 and 7.2</td>
</tr>
<tr>
<td>Fertilization rate (%)</td>
<td>68</td>
</tr>
<tr>
<td>Mean number of embryos transferred / cycle</td>
<td>1.4 embryo / transfer</td>
</tr>
<tr>
<td>Pregnancy rate per transfer</td>
<td>% 66</td>
</tr>
<tr>
<td>Clinical pregnancy rate per transfer</td>
<td>% 57</td>
</tr>
<tr>
<td>Ongoing pregnancy rate per transfer</td>
<td>% 50</td>
</tr>
</tbody>
</table>
Specific problems of antagonist cycles

Definition

D5 of stimulation

- Lead follicle ≥ 14 mm
- the rest ≤ 10 mm

Asynchronous follicular growth
Specific problems of antagonist cycles

Definition

D5 of stimulation

Lead follicle \(\geq 14 \text{ mm} \)

+

the rest \(\leq 10 \text{ mm} \)

1 in 30 cycles
Day when hCG criteria was met

1/3 rd of patients had not required additional rFSH

Data on file.
How long did the stimulation last?

number of patients

stimulation period (days)

<table>
<thead>
<tr>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>11</td>
<td>12</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>
How long did the stimulation last?

% 87 completed the stimulation with a maximum of single dose

% 47 completed the stimulation without any extra dose
Did the outcome differ in cycles reaching hCG criteria with a single corifollitropin alfa shot (quick responders)?

![Bar chart showing pregnancy rate per embryo transfer]

- **Quick responders**: 71%
- **Slower responders**: 62%

Pregnancy rate per embryo transfer
Additional dose requirement

In 15 cycles that have not reached the criteria for hCG triggering within 7 days of corifollitropin alfa injection, the mean additional dose requirement per patient was:

310 IU of gonadotropin per patient
Peak serum E$_2$ levels on the day of hCG

<table>
<thead>
<tr>
<th>pg / mL</th>
<th>Number of Patients</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 500</td>
<td>2</td>
</tr>
<tr>
<td>500-1000</td>
<td>5</td>
</tr>
<tr>
<td>1000-1500</td>
<td>9</td>
</tr>
<tr>
<td>1500-2000</td>
<td>8</td>
</tr>
<tr>
<td>2000-2500</td>
<td>1</td>
</tr>
<tr>
<td>2500-3000</td>
<td>1</td>
</tr>
<tr>
<td>3000-3500</td>
<td>1</td>
</tr>
<tr>
<td>> 3500</td>
<td>3</td>
</tr>
</tbody>
</table>
Peak serum E_2 levels on the day of hCG

87% relatively safe zone for OHSS

<table>
<thead>
<tr>
<th>pg / mL</th>
<th>Number of Patients</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 500</td>
<td>2</td>
</tr>
<tr>
<td>500-1000</td>
<td>5</td>
</tr>
<tr>
<td>1000-1500</td>
<td>9</td>
</tr>
<tr>
<td>1500-2000</td>
<td>8</td>
</tr>
<tr>
<td>2000-2500</td>
<td>1</td>
</tr>
<tr>
<td>2500-3000</td>
<td>1</td>
</tr>
<tr>
<td>3000-3500</td>
<td>1</td>
</tr>
<tr>
<td>> 3500</td>
<td>3</td>
</tr>
</tbody>
</table>
Peak serum E_2 levels on the day of hCG

- Median P_4 on the day of hCG:
 - 0.9 ng / mL
Peak serum E_2 levels on the day of hCG

<table>
<thead>
<tr>
<th>E_2 Concentration (pg/mL)</th>
<th>Number of Patients</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 500</td>
<td>2</td>
</tr>
<tr>
<td>500-1000</td>
<td>5</td>
</tr>
<tr>
<td>1000-1500</td>
<td>9</td>
</tr>
<tr>
<td>1500-2000</td>
<td>8</td>
</tr>
<tr>
<td>2000-2500</td>
<td>1</td>
</tr>
<tr>
<td>2500-3000</td>
<td>1</td>
</tr>
<tr>
<td>3000-3500</td>
<td>1</td>
</tr>
<tr>
<td>> 3500</td>
<td>3</td>
</tr>
</tbody>
</table>

Median P_4 on the day of hCG:
- 0.6 ng/mL
- 0.9 ng/mL
What about P_4 elevation in follicular phase?

<table>
<thead>
<tr>
<th>Serum P_4 on the day of hCG</th>
<th>Number of cycles</th>
</tr>
</thead>
<tbody>
<tr>
<td>≥ 1.5 ng / mL</td>
<td>0</td>
</tr>
</tbody>
</table>
What about P_4 elevation in follicular phase?

<table>
<thead>
<tr>
<th>Serum P_4 on the day of hCG</th>
<th>Number of cycles</th>
</tr>
</thead>
<tbody>
<tr>
<td>≥ 1.5 ng / mL</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>cases</th>
<th>Peak estradiol (pg / mL)</th>
<th>Corresponding P_4 (ng / mL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>13</td>
<td>5412</td>
<td>1,01</td>
</tr>
<tr>
<td>18</td>
<td>3802</td>
<td>0,4</td>
</tr>
<tr>
<td>26</td>
<td>4926</td>
<td>0,7</td>
</tr>
</tbody>
</table>
Unexpected poor response rate

<table>
<thead>
<tr>
<th>number of cycles with (\leq 3) eggs retrieved</th>
<th>(n) (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 / 30 (%10)</td>
<td></td>
</tr>
</tbody>
</table>
3.2.2 Cancellation rate per woman randomized

<table>
<thead>
<tr>
<th>Study</th>
<th>Women randomized</th>
<th>Women randomized</th>
<th>Cancellation</th>
<th>Cancellation (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Corifollitropin alfa study</td>
<td>53</td>
<td>242</td>
<td>15</td>
<td>83</td>
</tr>
<tr>
<td>Devroy 2004</td>
<td>11</td>
<td>75</td>
<td>1</td>
<td>24</td>
</tr>
<tr>
<td>Engage study 2009</td>
<td>62</td>
<td>756</td>
<td>41</td>
<td>750</td>
</tr>
<tr>
<td>Ensure study group 2010</td>
<td>22</td>
<td>268</td>
<td>8</td>
<td>128</td>
</tr>
<tr>
<td>Subtotal (95% CI)</td>
<td>1341</td>
<td></td>
<td>985</td>
<td>100.0%</td>
</tr>
</tbody>
</table>

Total events 148

Heterogeneity: $\chi^2 = 1.16$, $df = 3$ ($P = 0.76$); $I^2 = 0$

Test for overall effect: $Z = 2.49$ ($P = 0.01$)

3.2.3 Cancellation due to overstimulation

<table>
<thead>
<tr>
<th>Study</th>
<th>Women randomized</th>
<th>Women randomized</th>
<th>Cancellation</th>
<th>Cancellation (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Engage study 2009</td>
<td>6</td>
<td>756</td>
<td>0</td>
<td>750</td>
</tr>
<tr>
<td>Ensure study group 2010</td>
<td>6</td>
<td>268</td>
<td>1</td>
<td>128</td>
</tr>
<tr>
<td>Subtotal (95% CI)</td>
<td>1024</td>
<td></td>
<td>878</td>
<td>100.0%</td>
</tr>
</tbody>
</table>

Total events 12

Heterogeneity: $\chi^2 = 0.70$, $df = 1$ ($P = 0.40$); $I^2 = 0$

Test for overall effect: $Z = 2.03$ ($P = 0.04$)

3.2.4 Cancellation due to understimulation

<table>
<thead>
<tr>
<th>Study</th>
<th>Women randomized</th>
<th>Women randomized</th>
<th>Cancellation</th>
<th>Cancellation (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Engage study 2009</td>
<td>39</td>
<td>756</td>
<td>34</td>
<td>750</td>
</tr>
<tr>
<td>Ensure study group 2010</td>
<td>2</td>
<td>268</td>
<td>1</td>
<td>128</td>
</tr>
<tr>
<td>Subtotal (95% CI)</td>
<td>1024</td>
<td></td>
<td>878</td>
<td>100.0%</td>
</tr>
</tbody>
</table>

Total events 41

Heterogeneity: $\chi^2 = 0.02$, $df = 1$ ($P = 0.88$); $I^2 = 0$

Test for overall effect: $Z = 0.55$ ($P = 0.58$)
no cancellation in this first series of patients
% of patients

<table>
<thead>
<tr>
<th></th>
<th>Corifollitropin alfa (n=30)</th>
<th>Engage trial</th>
<th>Ensure trial</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hafif</td>
<td>3.3</td>
<td>2.9</td>
<td>3.0</td>
</tr>
<tr>
<td>Orta</td>
<td>0</td>
<td>2.3</td>
<td>2.2</td>
</tr>
<tr>
<td>Şiddetli</td>
<td>0</td>
<td>1.9</td>
<td>1.8</td>
</tr>
</tbody>
</table>
Day of ET

- D5 transfer: 14
- D2 transfer: 1
- D3 transfer: 15

Embryo quality

- grade I: 44
- grade II-IV: 56
Day 2 vs Day 3 Initiation of Stimulation

<table>
<thead>
<tr>
<th>Corifollitropin alfa</th>
<th>Cycle Day 2 (n=343)</th>
<th>Cycle Day 3 (n=368)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Duration of stimulation, days</td>
<td>9.8 (1.4)</td>
<td>9.4 (1.5)</td>
</tr>
<tr>
<td>Estradiol on day of hCG, pmol/L</td>
<td>4239 (1512, 11,891)</td>
<td>4899 (1762, 11,671)</td>
</tr>
<tr>
<td>Number of oocytes retrieved</td>
<td>14.1 (8.1)</td>
<td>14.0 (7.9)</td>
</tr>
<tr>
<td>Ongoing pregnancy rate, % (n)</td>
<td>37.9 (130)</td>
<td>43.5 (160)</td>
</tr>
</tbody>
</table>

Data are mean (SD) unless otherwise stated.

*aRestricted to patients treated with hCG.

*bData are median (P5, P95).
D2 vs D3 start of corifollitropin alfa

<table>
<thead>
<tr>
<th></th>
<th>D2</th>
<th>D3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stimulation phase in days (median)</td>
<td>9</td>
<td>8</td>
</tr>
<tr>
<td>Duration of antagonist use in days (median)</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>Number of oocytes retrieved per OPU (mean)</td>
<td>10</td>
<td>14,4</td>
</tr>
<tr>
<td>Number of MII oocytes per OPU (mean)</td>
<td>6,4</td>
<td>9,6</td>
</tr>
<tr>
<td>Pregnancy rate / ET (%)</td>
<td>63 %</td>
<td>75 %</td>
</tr>
</tbody>
</table>
D2 vs D3 start of corifollitropin alfa

<table>
<thead>
<tr>
<th></th>
<th>D2</th>
<th>D3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stimulation phase in days (median)</td>
<td>9</td>
<td>8 (-1)</td>
</tr>
<tr>
<td>Duration of antagonist use in days (median)</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>Number of oocytes retrieved per OPU (mean)</td>
<td>10</td>
<td>14,4</td>
</tr>
<tr>
<td>Number of MII oocytes per OPU (mean)</td>
<td>6,4</td>
<td>9,6</td>
</tr>
<tr>
<td>Pregnancy rate / ET (%)</td>
<td>63 %</td>
<td>75 %</td>
</tr>
</tbody>
</table>
D2 vs D3 start of corifollitropin alfa

<table>
<thead>
<tr>
<th></th>
<th>D2</th>
<th>D3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stimulation phase in days (median)</td>
<td>9</td>
<td>8</td>
</tr>
<tr>
<td>Duration of antagonist use in days (median)</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>Number of oocytes retrieved per OPU (mean)</td>
<td>10</td>
<td>14,4</td>
</tr>
<tr>
<td>Number of MII oocytes per OPU (mean)</td>
<td>6,4</td>
<td>9,6</td>
</tr>
<tr>
<td>Pregnancy rate / ET (%)</td>
<td>63 %</td>
<td>75 %</td>
</tr>
</tbody>
</table>
D2 vs D3 start of corifollitropin alfa

<table>
<thead>
<tr>
<th></th>
<th>D2</th>
<th>D3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stimulation phase in days (median)</td>
<td>9</td>
<td>8</td>
</tr>
<tr>
<td>Duration of antagonist use in days (median)</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>Number of oocytes retrieved per OPU (mean)</td>
<td>10</td>
<td>14.4</td>
</tr>
<tr>
<td>Number of MII oocytes per OPU (mean)</td>
<td>6.4</td>
<td>9.6</td>
</tr>
<tr>
<td>Pregnancy rate / ET (%)</td>
<td>63 %</td>
<td>75 %</td>
</tr>
</tbody>
</table>
D2 vs D3 start of corifollitropin alfa

<table>
<thead>
<tr>
<th></th>
<th>D2</th>
<th>D3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stimulation phase in days (median)</td>
<td>9</td>
<td>8</td>
</tr>
<tr>
<td>Duration of antagonist use in days (median)</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>Number of oocytes retrieved per OPU (mean)</td>
<td>10</td>
<td>14,4</td>
</tr>
<tr>
<td>Number of MII oocytes per OPU (mean)</td>
<td>6,4</td>
<td>9,6</td>
</tr>
<tr>
<td>Pregnancy rate / ET (%)</td>
<td>63 %</td>
<td>75 %</td>
</tr>
</tbody>
</table>
D2 vs D3 start of corifollitropin alfa

<table>
<thead>
<tr>
<th></th>
<th>D2</th>
<th>D3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stimulation phase in days (median)</td>
<td>9</td>
<td>8</td>
</tr>
<tr>
<td>Duration of antagonist use in days (median)</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>Number of oocytes retrieved per OPU (mean)</td>
<td>10</td>
<td>14,4</td>
</tr>
<tr>
<td>Number of MII oocytes per OPU (mean)</td>
<td>6,4</td>
<td>9,6</td>
</tr>
<tr>
<td>Pregnancy rate / ET (%)</td>
<td>63 %</td>
<td>75 %</td>
</tr>
</tbody>
</table>
D2 vs D3 start of corifollitropin alfa

<table>
<thead>
<tr>
<th></th>
<th>D2</th>
<th>D3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stimulation phase in days (median)</td>
<td>9</td>
<td>8</td>
</tr>
<tr>
<td>Duration of antagonist use in days (median)</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>Number of oocytes retrieved per OPU (mean)</td>
<td>10</td>
<td>14,4</td>
</tr>
<tr>
<td>Number of MII oocytes per OPU (mean)</td>
<td>6,4</td>
<td>9,6</td>
</tr>
<tr>
<td>Pregnancy rate / ET (%)</td>
<td>63 %</td>
<td>75 %</td>
</tr>
</tbody>
</table>
D2 vs D3 start of corifollitropin alfa

<table>
<thead>
<tr>
<th></th>
<th>D2</th>
<th>D3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stimulation phase in days (median)</td>
<td>9</td>
<td>8</td>
</tr>
<tr>
<td>Duration of antagonist use in days (median)</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>Number of oocytes retrieved per OPU (mean)</td>
<td>10</td>
<td>14.4</td>
</tr>
<tr>
<td>Number of MII oocytes per OPU (mean)</td>
<td>6.4</td>
<td>9.6</td>
</tr>
<tr>
<td>Pregnancy rate / ET (%)</td>
<td>63 %</td>
<td>75 %</td>
</tr>
</tbody>
</table>
D2 vs D3 start of corifollitropin alfa

<table>
<thead>
<tr>
<th></th>
<th>D2</th>
<th>D3</th>
<th>Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stimulation phase in days (median)</td>
<td>9</td>
<td>8</td>
<td>-1</td>
</tr>
<tr>
<td>Duration of antagonist use in days (median)</td>
<td>5</td>
<td>4</td>
<td>-1</td>
</tr>
<tr>
<td>Number of oocytes retrieved per OPU (mean)</td>
<td>10</td>
<td>14,4</td>
<td>+4</td>
</tr>
<tr>
<td>Number of MII oocytes per OPU (mean)</td>
<td>6,4</td>
<td>9,6</td>
<td>+3</td>
</tr>
<tr>
<td>Pregnancy rate / ET (%)</td>
<td>63 %</td>
<td>75 %</td>
<td></td>
</tr>
<tr>
<td></td>
<td>D2</td>
<td>D3</td>
<td></td>
</tr>
<tr>
<td>--------------------------------</td>
<td>----------</td>
<td>----------</td>
<td></td>
</tr>
<tr>
<td>Stimulation phase in days (median)</td>
<td>9</td>
<td>8 (-1)</td>
<td></td>
</tr>
<tr>
<td>Duration of antagonist use in days (median)</td>
<td>5</td>
<td>4 (-1)</td>
<td></td>
</tr>
<tr>
<td>Number of oocytes retrieved per OPU (mean)</td>
<td>10</td>
<td>14.4 (+4)</td>
<td></td>
</tr>
<tr>
<td>Number of MII oocytes per OPU (mean)</td>
<td>6.4</td>
<td>9.6 (+3)</td>
<td></td>
</tr>
<tr>
<td>Pregnancy rate / ET (%)</td>
<td>63 %</td>
<td>75 % (+12)</td>
<td></td>
</tr>
</tbody>
</table>
Conclusions

- Corifollitropin alfa can be adopted easily to clinical practice without any compromise in cycle outcomes.

- It has additional benefits of simplicity and patient friendliness.

- Just like the introduction of antagonists into COH, this mode of ovarian stimulation will have a prominent role in the management of IVF cycles.